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Effect of cell size in calculating frequencies of magnetic modes using micromagnetics: Special
role of the uniform mode
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Using the time evolution of the dynamic magnetization, we study the frequencies of spin excitations in small
ferromagnetic bars with particular attention to the uniform mode. The calculation is done using micromagnet-
ics, and the frequency of various modes is found as a function of the cell size used in the calculation. We find
that the uniform mode and some standing spin-wave modes are relatively insensitive to changes in the cell size.
In contrast, edge modes and corner modes show significant frequency changes as the cell size is changed in the
micromagnetics calculation. These results justify the use of micromagnetics with larger cells to estimate the
frequency of the uniform mode of micronsized magnetic bars. A comparison of experiment and theory shows
that the micromagnetics estimate is significantly better than the usual Kittel formula with effective demagne-

tizing factors; however appreciable differences remain.
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I. INTRODUCTION

One of the standard techniques used in characterizing
magnetic materials is ferromagnetic resonance. This method
measures the response of a magnetic structure to an exter-
nally applied microwave field. Typically this technique
couples most strongly to the “uniform” mode, although it is
sometimes possible to obtain information on other magnetic
excitations in a given structure.'> The simplest description of
the uniform mode is obtained by analogy with a three-
dimensional (3D) ellipsoid for which the precessions of all
spins are in phase and are equal in amplitude; i.e., the mag-
netization precesses rigidly, with no spatial variation in the
dynamic magnetization. In this case, there are demagnetizing
fields which come from effective magnetic charges on the
surface of the sample. For a 3D ellipsoid, the uniform mode
frequency is given by what is often known as the Kittel
formula,?

f=wI[H+4m(N,- N)M][H +4m(N,-N)M], (1)

where vy is the gyromagnetic ratio, H is the applied field in
the z direction, M is the saturation magnetization, and N,, N,
and N, are the demagnetizing factors of the 3D ellipsoid. For
a rectangular prism, the effective demagnetizing factors may
be approximated by the method given by Aharoni.*

More accurate results can be obtained by relaxing the as-
sumptions inherent in obtaining Eq. (1), viz., that the static
magnetization and dynamic magnetizations are uniform
throughout the sample. There have been some recent elegant
theoretical treatments>”’ of magnetic excitations in nano-
structures which show deviations from Eq. (1). However,
some of these techniques still assume that the static magne-
tization is uniform throughout the sample despite the fact
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that it is well known that the microscopic magnetic structure
may not be uniform and, in small external fields, may even
break up into magnetic domains.

One technique for the calculation of the magnetic struc-
ture of nano- and microsized objects is to use micromagnet-
ics. These calculations break the structure into small cells.
Each cell represents a group of spins which all point in ap-
proximately the same direction. The cells interact with each
other via dipolar fields and renormalized exchange fields.
One often has external fields and anisotropy fields which act
on each cell as well. The motion of a the magnetization in a
cell is given by the Landau-Lifshitz equation,

M A
=T MxHetf
ot 1+ a?

M X (M X Hg) |, (2)
where H.y is the effective field acting on a cell, M is the
magnetization, and « is a dimensionless damping constant.
For an equilibrium structure, one looks for a final state where

M XHetf is close to zero for all cells. Since the size of the
unit cell can play a critical role, it is generally accepted that
the cell size must be smaller than the exchange length, typi-
cally 5-10 nm for ferromagnetic metals.

As indicated in Eq. (2), micromagnetics can also be used
to obtain the dynamic motion of a small object.®~10 Although
these techniques have yielded results that are in agreement
with experimental findings, the role of the elementary cell
size in dynamical calculations has not been suitably ad-
dressed. However, if the cell dimension (5-10 nm) restriction
is enforced, the total number of cells required for the simu-
lation of the normal modes of particles that are larger than
about 1 um is so large that it essentially precludes any
simulation. Here we wish to determine if there are any cir-
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cumstances where the 5-10 nm cell size restriction relevant
for the calculation of the static structure can be relaxed in
finding the dynamic modes. The question is one of consider-
able practical importance since many device situations in-
clude magnetic structures at or above the 1 um scale. One
indication that it might be possible to find situations where
the size restriction might be relaxed is found in analytic theo-
ries for the modes in nanosized objects. As we have noted,
such theories generally begin with an assumption of a uni-
form static magnetization throughout the nano-object. In Ref.
8 the effect of cell size was also briefly addressed and it was
found that some of the modes depended more strongly than
others on the cell size. Here we address this issue more sys-
tematically.

In this paper, we use a dynamical micromagnetic scheme
to calculate the static and dynamic behaviors of nanosized
rectangular bars. We examine how the dynamical frequencies
of the different modes depend on the cell size used in the
calculation. Many modes show substantial dependence on
the cell size until the size is brought into the 5-10 nm range.
However the uniform mode or “ferromagnetic resonance”
mode shows a remarkable independence from the cell di-
mensions. Indeed for this mode calculations with 6 nm cells
give essentially the same result as with 100 nm cells.

The findings reported here will be quite helpful because
they allow one to use micromagnetic calculations as an ap-
proximation on larger, micronsized bars without having so
many cells that the calculation becomes impossible. As an
example, we compare theory and measurements for the uni-
form mode in Permalloy bars which are 4 wm wide, 8 um
long, and 100 nm thick. We use cell sizes of 200X200
X 100 nm?. However, despite these large cells, the micro-
magnetics calculations are significantly closer to the experi-
mental data than the Kittel approximation based on a uni-
form magnetization.

II. CALCULATIONAL METHOD

We use a variation of the method outlined in Ref. 8. The
motion of the magnetization in each cell is governed by the
Landau-Lifshitz equation [Eq. (2)]. The effective field acting
on a cell is given by a sum of the dipole fields, effective
exchange fields and the applied field:

Heff = Hdipolar + Hexchange + Happlied~ (3)
In this work we neglect crystalline anisotropy, but this can be

easily included. The external and constant field Hyypjicq is
directed in the plane of the sample, either parallel or perpen-
dicular to the long axis of the bar. The dipolar terms are

found using the Newell tensor'! N. The dipole field acting on
acell i is given by a sum over all the cells j, including cell i:

Hdipolar—i=_2N(ri_rj)'Mj- (4)
J

Here r; is the position vector of the ith cell and M ; is the
magnetization of cell j. The exchange fields are given by
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Hexchange = JE n—’)l,m. (5)

nn

The sum is over the nearest neighbors of the cell of interest,
and m,,, is a unit vector indicating the direction of the mag-
netization in the nearest-neighbor cells. J is the effective ex-
change coupling constant which depends on the cell size:

2A
=M 10°, (6)
where A is the usual exchange coupling constant measured in
ergs/cm, d is the side length of the cell in the plane in na-
nometers, and M is the saturation magnetization in ki-
loGauss. The units of J are kiloGauss.

To find the equilibrium state of the object, one starts the
system in an arbitrary configuration and iterates forward in
time using a numerical method such as the fourth-order
Runge-Kutta scheme. Eventually the torque on each cell is
nearly zero, and the system is in an equilibrium state. We
have checked that our results are equivalent to those found
by 0OMMF.!? Once in equilibrium, the magnetization in each
cell is then given a small perturbation and the time evolution
of the system as a whole and of each cell is recorded. From
the Fourier transform of the time evolution, one can obtain
the eigenfrequencies of the modes which are excited by a
particular perturbation.

III. BEHAVIOR OF MODES AS A FUNCTION
OF CELL SIZE

In order to understand how cell size in micromagnetics
influences the frequencies of the individual modes, we study
a small magnetic parallelepiped that is 6 X 240X 480 nm?>.
In this structure the lateral cell size can easily be varied from
6 to 60 nm. We use y=2.9 GHz/kOe and M=0.7639 kG,
which will match with the experimental parameters for Per-
malloy in Sec. IV. The applied field is 2 kOe.

In order to have a qualitative feel for the modes which
appear in the dynamic micromagnetic calculation, we present
the results for three modes that represent the major types of
modes that are encountered in rectangular particles. The cal-
culations are done for the case where H is in plane and
perpendicular to the long axis and H=2 kOe. We chose this
value of the field because it is large enough to lead to an
almost saturated state. The lateral cell dimensions are 20
X 20 nm?. The amplitude distribution within the particle is
shown in Fig. 1 for three modes. Similar results are found for
calculations with different cell dimensions. These schematics
show the out-of-plane amplitudes at a given instant; i.e., it is
a snapshot of the motion of the magnetization. The lowest
frequency mode is an edge mode (a) where the excitation is
localized at the edges of the sample. The uniform mode (b)
has all spins pointing out of plane at the same time. The
amplitude is largest near the center of the sample, but near
the ends the spins are effectively pinned and the amplitude is
near zero. The standing-wave-like solutions (c) have some
regions where the spins are up and other regions where they
are down.

Figure 2 presents the frequencies of four modes as a func-
tion of cell size for the case where the field is parallel to the
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FIG. 1. Typical modes in rectangular ferromagnetic bars. (a)
shows a snapshot the out-of-plane magnetization for an edge mode
at a frequency of 9.76 GHz. (b) shows the uniform mode at 13.76
GHz, and (c) shows a standing-wave mode at 15.1 GHz. The ap-
plied field, H=2 kOe, is in the plane of the sample and along the
short axis.

long axis of the bars. The primary observations from this
graph are that the edge modes and corner modes are quite
sensitive to the cell size, the standing-wave mode is slightly
sensitive to the cell size, and the uniform mode is nearly
independent of the cell size. Nonetheless, the frequency for
the uniform mode is different from that found with the Kittel
formula. The demagnetizing factors used in the Kittel
formula* are N,=0.9437, Ny=0.0378, and N,=0.0185; and
the uniform mode frequency from Eq. (1) is 14.15 GHz.
Figure 3 presents the frequencies of the observed modes
as a function of cell size for the case where the 2 kG field is
applied in plane but perpendicular to the long axis of the
bars. Again we note that the uniform mode and standing-
wave mode are nearly independent of the cell size, but that
the corner and edge modes show a strong dependence on the
size of the cell. Note that the frequency of the uniform mode
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FIG. 2. Frequency of excitations calculated for a 6X240
X 480 nm? rectangular Permalloy bar as a function of the side
length d of the cell. The cells are 6 nmXdXd in size, and an
applied field of 2 kOe is directed along the long axis. The double
line of data for the uniform mode occurs when there is a hybridiza-
tion of the uniform mode with two other modes.

obtained from the Kittel formula is substantially below that
found in the micromagnetics calculation.

There are two questions that need to be answered: (1)
Why are the frequencies of the uniform and standing-wave
modes so much less dependent on cell size than the edge or
corner modes? (2) Why is the frequency found by micromag-
netics different from that found by the Kittel formula and
which one is correct?

We believe that both effects are related to the nonunifor-
mity of the demagnetizing fields. In rectangular particles the
demagnetizing fields (both static and dynamic) are highly
nonuniform. One effect of these nonuniformities results in
changes in the mode profiles that lead to pinninglike effects.
It has been noted by several groups that the uniform mode is
nearly pinned at the edges of the structure; i.e., the amplitude
of the dynamic motion is significantly reduced at the edges
compared to the center of the structure. When the cell sizes
are changed, it is the spin configuration near the edges that
usually shows the largest changes. However, because the uni-
form mode is dynamically pinned near the edges, these
changes in static structure do not produce changes in the
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FIG. 3. Frequency of excitations calculated for a 6 X240
X480 nm? rectangular Permalloy bar as a function of the side
length d of the cell. The cells are 6 nmXdXd in size, and an
applied field of 2 kOe is directed perpendicular to the long axis
along the 240 nm axis.
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dynamical uniform mode. In contrast, the edge modes and
corner modes are strongly localized near the edges of the
sample and as a result show significant changes as the cell
size changes.

Since the Kittel formulation is basically equivalent to a
micromagnetic simulation with a single cell and thereby does
not allow for any degree of pinning at the ends, it also be-
comes clear why the Kittel formula might not lead to the
correct result. However, it is less obvious exactly how the
micromagnetics result will change the frequency. In the ex-
amples above, one finds that the Kittel frequency lies below
that found by micromagnetics. We note that for the case
shown in Fig. 3, the uniform mode remains nearly constant
with frequency until the cell size is about 200 nm and the
total number of cells is below 10. For a very small number of
cells, one recovers the Kittel result.

An additional question relates to the cell size that is nec-
essary for a proper description of the edge and corner modes.
One could expect that for these modes one has to have a
proper description of the static configuration near the edges.
Thus the cell size would need to be on the order of the
exchange length, say 2-3 nm. Such calculations could be
prohibitive in terms of time even for this relatively small
structure. We estimate that adding another point in Figs. 2
and 3 at a cell size of 3 nm could take calculations of up to
60 days with our computing facilities. Nonetheless, project-
ing the curves of Figs. 2 and 3 to smaller cell sizes allows
one to make reasonable estimates for the values and errors
associated with all the modes. In fact, one can already see a
slight flattening in Figs. 2 and 3 for the edge and corner
mode frequencies at the 6 nm cell size. This is consistent
with the idea that a cell size of 2—3 nm might be sufficient to
properly describe the edge and corner modes.

IV. COMPARISON OF THEORY AND EXPERIMENT

There have been several recent reports on the response of
micronsized magnetic bars to microwave fields.>!># It is
clear in these studies that the main absorption occurs at the
frequency of the uniform mode. In this section we present a
careful comparison of some experimental results on Permal-
loy bars with different theoretical approaches. We examined
a number of Permalloy bars of different sizes, but we will
concentrate on bars which are 8 um long, 4 um wide, and
100 nm thick.

Using a coplanar waveguide and a network analyzer,”> we
have made measurements on the absorption of the micro-
wave energy by the Permalloy (Py) bars as a function of
frequency for different magnetic fields. Two geometries were
investigated: (1) the static magnetic field is parallel to the
long axis of a Permalloy bar, and (2) the static magnetic field
is perpendicular to the long axis but still in the plane of the
sample. In Fig. 4(a) we present the frequency of the main
absorption peak as a function of magnetic field for the two
geometries (filled circles for H parallel to the long axis and
open circles for H parallel to the short axis). We also show a
theoretical fitting (full lines) based on the Kittel formula.
[The demagnetizing factors in Eq. (1) are N,=0.944 N,
=0.0378 and N.=0.0184 for the case that the external field is
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FIG. 4. Experimental and theoretical results for frequency of the
uniform mode as a function of external field in a 100 nm
X4 pumX8 um Py bar. The dots represent the experimental data;
the lines are the theoretical calculations. Closed circles are for the
field parallel to the long axis; open circles are for the field perpen-
dicular to the long axis but in the plane of the sample. The theoret-
ical results, calculated using the Kittel formula, shown in (a) pro-
vide a poorer description of the experimental results than those in
(b), which were obtained using micromagnetics.

along the long axis. When the field is perpendicular to the
long axis, the demagnetizing factors in Eq. (1) are N,
=0.944, N;,=0.0184, and NZ=O.0378.] It is immediately ob-
vious that the experimental data show a much narrower sepa-
ration in frequency between the two geometries than that
which is predicted by the theoretical results.

An important question is whether these differences could
be caused by variations in the experimental conditions and/or
material parameters. To decrease the difference in frequency,
one needs to reduce the effect of the demagnetizing fields.
This could be done either by varying the particle shape
slightly or by reducing M. We find that if the thickness of the
bar is reduced by 10%, there are only minimal changes in the
demagnetizing factors and that the resulting frequencies are
also minimally changed. A similar behavior is found if the
length or the width is changed by about 10%. Because errors
in size can be controlled to better than 10%, we can conclude
that geometrical factors cannot reconcile theory and experi-
ment. Similarly, if M were to be reduced sufficiently to nar-
row the difference in frequency between the two geometries,
the data points would then lie well above the theoretical
curves. So, changes in M can also be discarded as an expla-
nation of the differences.

In Fig. 4(b), we compare experiment with the results of
micromagnetics calculations. For these simulations, the cell
size is 200X 200 X 100 nm®. We use 40 cells for the length,
20 cells for the width, and 1 cell for the thickness. The total
time of the simulation is sufficiently long so as to lead to a
frequency resolution of under 0.1 GHz after the Fourier
transform. The simulations provide a better fit to the experi-
mental data than that obtained using the Kittel formula. In
order to see this more clearly, Fig. 5 shows the differences in
frequency between the external field applied along the long
axis (8 wm length) and along the short axis (4 wm length.)
We attribute the improvement of the simulations over the
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FIG. 5. (Color online) A comparison of the difference in fre-
quency between the cases where the magnetic field is applied along
the long axis (8 wm) and along the short axis (4 wm). The dy-
namic micromagnetic calculation reduces the error substantially
compared to the error from the Kittel formula.

Kittel formula to that fact that the assumptions of the Kittel
formula, a rigid precession of all spins, are not imposed in
the simulations.

V. SUMMARY AND DISCUSSION

We have explored the variation of the frequencies of ex-
citations in small ferromagnetic bars as a function of cell
size. We find that the uniform mode and some standing spin-
wave modes are relatively insensitive to changes in cell size.
In contrast, edge modes and corner modes show significant
frequency changes as the cell size is changed in the micro-
magnetics calculation.

All of the calculations presented here are for states where
the bar is close to saturation. As mentioned earlier, the as-
sumption of saturation is used in analytic calculations for
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long bars and the results here serve as some support for those
calculations. Clearly if the bar is broken into domains, then
micromagnetics may still be used to obtain the dynamical
modes, but one must use smaller cells.

Although Fig. 5 clearly shows that simulations provide a
more accurate description of the frequency of the uniform
precession mode than that by the Kittel formula, it still
leaves unanswered the question of why there is a discrepancy
between the simulations and the experiments. This is bother-
some since we argued that there are no simple parameters
that can be adjusted to improve agreement. We speculate that
the additional discrepancies might be due to the fact that
magnetization of the real sample is not fully saturated or that
the edges of the structures are significantly rounded. At this
stage we leave it as an open question. Nonetheless, the main
point remains unchanged—that dynamic micromagnetics,
even with large cells, can provide a better approximation for
the frequency of the uniform mode in large bars than does
the Kittel approximation.

We have carried out similar calculations for the frequency
of the uniform mode in vortex structures'>~!7 in square par-
ticles with surprisingly similar results. We studied the fre-
quencies of a 20X 300X 300 nm? Co nanostructure in zero
applied field. A variation of the side length of the cell from
d=10 nm to d=30 nm results in a frequency shift of less
than 1% for the uniform mode. Varying d from 10 to 60 nm
gives a frequency shift of about 4%. In contrast, a corner
mode frequency varies by about 11% in changing from d
=10 nm to d=30 nm. Thus even in a vortex state the uni-
form mode is relatively insensitive to the detailed structure
of the static magnetization.
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